

Introduction to Data
Science Using Python

Afrand Agah, Ph.D.

A Member of The Pennsylvania Alliance for Design of Open Textbooks

https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/
https://paadopt.org/

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC
BY-NC 4.0) as a part of PA-ADOPT, except where otherwise noted.

Cover image by Artturi Jalli on Unsplash.

The contents of this eTextbook were developed under a grant from the Fund for the Improvement of
Postsecondary Education, (FIPSE), U.S. Department of Education. However, those contents do not
necessarily represent the policy of the Department of Education, and you should not assume endorsement
by the Federal Government.

The Verdana (© 2006 Microsoft Corporation) and Courier New (© 2006 The Monotype Corporation) fonts
have been used throughout this book, which is permitted by their licenses:

License: You may use this font as permitted by the EULA for the product in which this font is
included to display and print content. You may only (i) embed this font in content as permitted by
the embedding restrictions included in this font; and (ii) temporarily download this font to a printer
or other output device to help print content.

Embedding: Editable embedding. This font may be embedded in documents and temporarily
loaded on the remote system. Documents containing this font may be editable (Apple Inc. (2021).
Font Book (Version 10.0 (404)) [App].).

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://unsplash.com/photos/black-flat-screen-computer-monitor-g5_rxRjvKmg?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@artturijalli?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/
http://www.ed.gov/FIPSE/
http://www.ed.gov/FIPSE/
https://learn.microsoft.com/en-us/typography/font-list/verdana
https://learn.microsoft.com/en-us/typography/font-list/courier-new

About PA-ADOPT

The Pennsylvania Alliance for Design of Open Textbooks (PA-ADOPT) is made up
of four participating institutions from the Pennsylvania State System of Higher
Education (PASSHE) that are all regional and primarily undergraduate
institutions, situated in Southeastern Pennsylvania. The PA-ADOPT project
addresses gaps in the open textbook marketplace, improves student learning,
and mitigates rising student costs. PA-ADOPT was made possible by the US
Department of Education Open Textbook Pilot Program.

https://paadopt.org/
https://www2.ed.gov/programs/otp/index.html
https://www2.ed.gov/programs/otp/index.html

Preface

Data science is the process of representing models that fit data. Its goal is to
predict future output based on past observations of inputs. In data science, one
collects information and interprets it to make decisions.

A data scientist must have programming skills and an understanding of
mathematics and statistical concepts. The first part of this book is an introduction
to Python programming, which is a highly used language by data scientists, and
the second part is an introduction to machine learning and statistical knowledge
required for data science. Python is a popular programming language because of
its scalability, readability, and strong community support. But perhaps the most
important aspect is its extensive libraries and frameworks.

About OER

Open Educational Resources (OER) are instructional, learning, and research
materials, digital or non, that are open-source and in the public domain or that
are licensed so that users have free and perpetual permission to engage in the
following activities:

• Retain: the right to make, own, and control copies of the content

• Reuse: the right to use the content in a wide range of ways

• Revise: the right to adapt, adjust, modify, or alter the content itself

• Remix: the right to combine the original or revised content with other open
content to create something new

• Redistribute: the right to share copies of the original content, revisions,
and remixes with others.

Table of Contents

About PA-ADOPT 3

Preface 4

About OER 5

Table of Contents 6

1. Installing Python 8

2. Introduction to Programming 10

2.1. Variables 11
2.1.1. Boolean Variables 13
2.1.2. Random Variables 15

2.2. Strings 15
2.3. ASCII Code 16

2.4. Practice Questions 21

3. Decision Structures 22

3.1. Nested Decision Structures 23
3.2. Practice Questions 25

4. Repetitions 27

4.1. While Loops 27
4.2. For Loops 29

4.3. Practice Questions 32
4.4. Nested Loops 33

4.5. Practice Questions 34

5. Functions 37

5.1. Void and Value Returning Functions 38
5.2. Passing Data to and From Functions 39
5.3. Mathematical Built-in Functions 40

5.4. Practice Questions 42

6. Recursion 43

7. File Access 45

7.1. Read From a File 46
7.2. Write to a File 46

7.2.1. New File 47
7.2.2. An Existing File 47

7.3. Notable Built-in Functions 47
7.4. Practice Questions 49

8. Lists 50

8.1. Practice Questions 55

9. Arrays 56

9.1 Practice Questions 57

10. Plotting Graphs 58

11. Object Oriented Programming 65

11.1 Constructor 66
11.2 Inheritance 66
11.3 Polymorphism 67

12. Using Python Packages 69

13. Python and Graph Theory 71

13.1 Networkx 72
13.2 Matplotlib 75

14. Python and Machine Learning 77

14.1 Supervised Learning 78
14.1.2 Regression 78
14.1.3 Linear Functions 78
14.1.4 Polynomial Functions 79

14.2. Unsupervised Learning 81

15. Python and Statistics 84

15.1 Standardizing Data by Scaling 86
15.2 T-Test 87

References 89

Appendix 90

Solutions for Practice Questions (2.4) 90
Solutions for Practice Questions (3.2) 93
Solutions for Practice Questions (4.3) 99
Solutions for Practice Questions (4.5) 103
Solutions for Practice Questions (5.4) 106
Solutions for Practice Questions (7.4) 110
Solutions for Practice Questions (8.1) 114
Solutions for Practice Questions (9.1) 115

1. Installing Python

A computer program is a list of step-by-step instructions to solve a given
problem. Imagine you need to have a typewritten essay. The first issue is in what
language the essay should be written: English, French, German, etc. Then, you
need to use software to type in your essay. Programming languages recognize
only plain text files that use a character encoding American Standard Code for
Information Interchange (ASCII) to represent numbers, letters, and symbols.

Here, we will use Python as our programming language, so you will need to
install Python 3.12 (the latest version of this writing) or a later version, as
depicted in Figure 1-1.

Python is available for Windows, Mac, and other platforms. When you install the
Python interpreter, IDLE will also automatically be installed. IDLE is an integrated
development environment for Python—a Python shell is depicted in Figure 1-2.

8

Figure 1-1 Python Interpreter

Figure 1-2 Screenshot of Python shell

Using a Python shell, you can test your Python program in an interactive mode.
Or you can use the text editor to type in your Python program; this is called
script mode. Python keywords are displayed in orange, comments are shown in
red, string literals are indicated in green, and built-in functions are displayed in
purple. The syntax of Python is easy so beginners can learn Python with no
difficulty. (Python is named after a comedy show, Monty Python.) Python has
several applications, including web development, machine learning, and data
analysis.

A high-level language lets you create programs without knowing how the internal
units of a computer work. A compiler translates a high-level language into a
machine language program. Machine language programs can then be executed at
any time. Python uses an interpreter, which translates and runs in a high-level
language.

Download Python from their website. Installation steps are simple: accept the
agreement and finish the installation. There are many helpful Python resources
on the web, such as:

• Python Software Foundation

• Python Documentation

Running Python programs: Mistakes in programs are called errors. IDLE catches
syntax errors; run time errors only occur while a program runs. When an error
occurs, Python stops executing and instead displays several lines of text
containing helpful information about the error.

9

http://www.python.org/downloads
https://en.wikipedia.org/wiki/Python_Software_Foundation
https://docs.python.org/3/

2. Introduction to Programming

Programming is the process of writing computer programs. Python is a
straightforward but powerful object-oriented programming language. A built-in
function in Python is called a function, which is a prewritten program. Let us
begin with print(argument), which is a widely used function. Consider the Python
statement of print(“west”); the argument is the message you write inside
parentheses. The word “west” is a word or a phrase but in Python, it is
considered a string literal and is the program's output, which will be displayed on
the screen.

By default, the operating system connects standard output to the terminal
window. String literal is any text that is enclosed in quotation marks. The quotes
surrounding a string are called delimiters because they tell Python where a string
begins and ends.

To display a string literal, you can use single-quote marks (‘’) or double-quote
marks (“”). If you have multiple arguments in a print () function, they are
separated by a space when they are displayed.

• Use sep to specify how to separate multiple items.

• Python inserts a space between each of the arguments of the print
function.

• Use \n to display the output on the following line.

• Use \’ or \” to display single-quote or double-quote marks.

• The print() function automatically advances to the following line.

• Use end to keep the print function from advancing to the following line.

• To deal with long strings, break them into multiple lines and put a
backslash at the end of every line except for the last line.

Comments improve the readability of a program, but they do not change the
outcome of a program. Use the # symbol to mark the start of a line as a
comment line. For comments that span several lines, use triple quotes.

10

2.1. Variables

The variable is a symbolic name representing a value whose associated value
may change. A variable must first be created to be utilized. Variables keep values
accessible. Values are assigned to variable names using the assignment operator
=. The assignment operator takes the value to the right side of the operation and
gives it to the name on the left side of the operator.

A variable can be overwritten for any number of times, but only the latest one
will be used in the program. Consider the following statements:

name= ‘West’

name= ‘Chester’

name= ‘University’

The variable name is being overwritten, the latest value assigned to the variable
name is university, and the program cannot access the old values of the variable
name. To name a variable, you must follow specific rules:

• Names are case-sensitive, so a variable named temp differs from one
named Temp.

• The name of a variable cannot contain space.

• The first symbol must be a letter between a to z or A to Z.

• After the first symbol, you may use any letter, digit, or underscore symbol.

• The first symbol can be the underscore symbol.

• Descriptive names are better than short names.

• Limiting variable names to a maximum of three or four is a good rule of
thumb.

• Do not use Python keywords; Here is a list of some Python keywords: and,
def, elif, else, FALSE, for, if, import, in, not, or, pass, return, TRUE, and
while.

There are different numerical types in Python, such as integers and float.
Consider 7 and 7.1234, both are numerical values, the first one is an integer and
the second one is a float. int() and float() can produce numbers of a specific

11

type. Int() returns an integer constructed from a number or string. Float()
returns a floating-point number built from a number or string.

Floating-point numbers always have at least one decimal place of precision.
Python supports mixed arithmetic: when a binary arithmetic operator has
operands of different numeric types, the operand with the narrower type is
widened, where the integer is more limited than the floating point.

To read data from the keyboard as input, use the input(prompt) function, which
reads a line from input and converts it to a string (stripping a trailing new line).
If the prompt argument is present, it is written to standard output. Consider the
following two statements:

name= input (‘Please enter a name’)

print (name)

This is a Python program to get input from the user. The string literal is the
prompt displayed on the screen, and the print statement will show the input on
the screen.

One primary reason to use a variable is to remember a value from one part of a
program to be used in another part. Let's assume that we need to have three
variables, and we call them x, y, and z. If

x = 10

y = 100

z = -2

y = 10

x = x + y + z

Then, variable x is initialized with the value of 10; variable y is initially 100, then
overwritten by 10, and the final value of x is 18.

All numeric types support the four primary mathematical operations: sum (+),
difference (-), product (*), and quotient (/). Additionally, you can use the
following operations: exponent (**), floored quotient (//), and the remainder
(%).

12

2.1.1. Boolean Variables

Boolean variables: Any object can be tested for truth value in conditional
statements. A Boolean variable is either true or false. Boolean returns zero for
false and one for true. You can use and, or and not to combine Boolean variables.
Table 2-1. depicts the logical meaning of using and, or operators.

AND operator takes two expressions and generates one new expression that is
true if both expressions are true. OR operator takes two expressions and
generates one new expression that is true if at least one of the expressions is
true.

Precedence of operation: To determine which operation needs to be evaluated
first, an operator with the highest precedence will be considered first if an
expression has more than one operator.

The highest priority is given to the following:

• exponentiation

• remainder, multiplication, division

• sum and difference

Python provides several ways to format a text. F-string embeds expressions
inside string literals. F-string is an expression that will be evaluated at run time
and is not a constant value. A string must end with the same character; if it
begins with a single quote, it must end with a single quote.

F-strings are string literals that have an f before the opening quotation mark.
Include Python expressions enclosed in curly braces. Python will replace those
expressions with their resulting values.

P Q P AND Q P OR Q

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

Table 2-1 Logical And, Or

13

Consider the following statements in Python:

number = 1234.56

print (f’{number}’)

print (f’{number:10.4f}’)

print (f’{number:.1f}’)

print (f’{number:,.5f}’)

This example illustrates formatting a given number in four different ways. The
number after the “:” represents the width of the displayed output, the number
after the “.” means the total number of digits after the decimal point and will be
rounded up or down accordingly, “,” is used to separate every three digits from
the integer part of the number.

A Python program to convert a degree from Fahrenheit to Celsius can be written
as follows:

F = 212

C = (F – 32) * 5/9

print (C)

Another example is to write a Python program to convert seconds into hours,
minutes, and seconds. We may have the following program:

Num = 86400

H = Num / 3600

M = (Num % 3600) // 60

S = Num % 60

print (H, “:”, M, “:”, S)

14

2.1.2. Random Variables

There are several ways to generate random numbers in Python using its
functions. The built-in random() function generates a random float number
between 0.0 and 1.0, with 53-bit precision. Each time this function is called, it
returns values uniformly distributed in the given range.

A Python program can gain access to another Python program by importing. By
importing, you bind two or more programs together. The interpreter has built-in
functions, such as the print() function. If a function is not part of the standard
library of Python, then you need to use import to bind it to your Python program;
for example, you may write it as the following:

import random

number = random.randint (5,10)

print (number)

which generates a random number in the given range; the randomly generated
number includes five and ten. The built-in randint(a,b) function generates a
random number that is an integer and is between a and b, including a and b.

2.2. Strings

The string is a primary data type in Python. Strings are used to represent texts.
A string contains individual symbols or elements. Another built-in function in
Python is len(), which returns the total number of elements in each string.

One can access each string element in Python by referring to its index. Indices
start from zero and proceed with increments of one at a time. Therefore, every
element of a string has a numbered position. Consider a string such as Name =
“ABCD”; here, Name [0] is A, Name [1] is B, and so on.

Sometimes, we may need to select more than one element of a string,
technically a span of elements is called a slice. To get a slice of the above Name
variable in Python, one can have Name [start: end], which returns elements
starting at position start, up to (not including) the element at position end.

Strings are immutable, which means they cannot be changed once they have
been created. The “+” operator concatenates two strings; this means “1” + “2” is
“12” and not “3”. If the element on either side of “+” is a string, Python performs
concatenation; if both sides are numbers, then it is a mathematical addition.

15

In Python, one can multiply a string by an integer, which will result in displaying
the string for an integer number of times. However, you cannot multiply two
strings. One can convert strings to numeral values by use of int(input(prompt))
or float(input(prompt)).

2.3. ASCII Code

The American Standard Code for Information Interchange is called ASCII and is
used for communication between computers. In this coding system, each
character and symbol is translated into a code readable by computers.

ASCII uses one byte of memory to display symbols, therefore it only displays 256
possible characters. This includes numbers, capital and lowercase letters, and a
few more symbols. This is not enough and a new standard has been created and
is called Unicode, which utilizes more than one byte supports more than 65,000
characters, and includes all letters from all international languages and symbols.
Table 2-2 depicts the ASCII table.

DEC. HEX. Symbol Symbol Description

0 00h NULL (Null character)

1 01h SOH (Start of Header)

2 02h STX (Start of Text)

3 03h ETX (End of Text)

4 04h EOT (End of Transmission)

5 05h ENQ (Enquiry)

6 06h ACK (Acknowledgement)

7 07h BEL (Bell)

8 08h BS (Backspace)

9 09h HT (Horizontal Tab)

10 0Ah LF (Line feed)

11 0Bh VT (Vertical Tab)

12 0Ch FF (Form feed)

13 0Dh CR (Carriage return)

14 0Eh SO (Shift Out)

15 0Fh SI (Shift In)

16 10h DLE (Data link escape)

17 11h DC1 (Device control 1)

18 12h DC2 (Device control 2)

16

19 13h DC3 (Device control 3)

20 14h DC4 (Device control 4)

21 15h NAK (Negative acknowledgement)

22 16h SYN (Synchronous idle)

23 17h ETB (End of transmission block)

24 18h CAN (Cancel)

25 19h EM (End of medium)

26 1Ah SUB (Substitute)

27 1Bh ESC (Escape)

28 1Ch FS (File separator)

29 1Dh GS (Group separator)

30 1Eh RS (Record separator)

31 1Fh US (Unit separator)

32 20h (Space)

33 21h ! (Exclamation mark)

34 22h " (Quotation mark; quotes)

35 23h # (Number sign)

36 24h $ (Dollar sign)

37 25h % (Percent sign)

38 26h & (Ampersand)

39 27h ' (Apostrophe)

40 28h ((round brackets or parentheses)

41 29h) (round brackets or parentheses)

42 2Ah * (Asterisk)

43 2Bh + (Plus sign)

44 2Ch , (Comma)

45 2Dh - (Hyphen)

46 2Eh . (Dot, full stop)

47 2Fh / (Slash)

48 30h 0 (number zero)

49 31h 1 (number one)

50 32h 2 (number two)

51 33h 3 (number three)

52 34h 4 (number four)

DEC. HEX. Symbol Symbol Description

17

53 35h 5 (number five)

54 36h 6 (number six)

55 37h 7 (number seven)

56 38h 8 (number eight)

57 39h 9 (number nine)

58 3Ah : (Colon)

59 3Bh ; (Semicolon)

60 3Ch < (Less-than sign)

61 3Dh = (Equals sign)

62 3Eh > (Greater-than sign; Inequality)

63 3Fh ? (Question mark)

64 40H @ (At sign)

65 41h A (Capital A)

66 42h B (Capital B)

67 43h C (Capital C)

68 44h D (Capital D)

69 45h E (Capital E)

70 46h F (Capital F)

71 47h G (Capital G)

72 48h H (Capital H)

73 49h I (Capital I)

74 4Ah J (Capital J)

75 4Bh K (Capital K)

76 4Ch L (Capital L)

77 4Dh M (Capital M)

78 4Eh N (Capital N)

79 4Fh O (Capital O)

80 50h P (Capital P)

81 51h Q (Capital Q)

82 52h R (Capital R)

83 53h S (Capital S)

84 54h T (Capital T)

85 55h U (Capital U)

86 56h V (Capital V)

DEC. HEX. Symbol Symbol Description

18

87 57h W (Capital W)

88 58h X (Capital X)

89 59h Y (Capital Y)

90 5Ah Z (Capital Z)

91 5Bh [(square brackets or box brackets)

92 5Ch \ (Backslash)

93 5Dh] (square brackets or box brackets)

94 5Eh ^ (Caret or circumflex accent)

95 5Fh _ (underscore, understrike, underbar or low line)

96 60h ` (Grave accent)

97 61h a (Lowercase a)

98 62h b (Lowercase b)

99 63h c (Lowercase c)

100 64h d (Lowercase d)

101 65h e (Lowercase e)

102 66h f (Lowercase f)

103 67h g (Lowercase g)

104 68h h (Lowercase h)

105 69h i (Lowercase i)

106 6Ah j (Lowercase j)

107 6Bh k (Lowercase k)

108 6Ch l (Lowercase l)

109 6Dh m (Lowercase m)

110 6Eh n (Lowercase n)

111 6Fh o (Lowercase o)

112 70h p (Lowercase p)

113 71h q (Lowercase q)

114 72h r (Lowercase r)

115 73h s (Lowercase s)

116 74h t (Lowercase t)

117 75h u (Lowercase u)

118 76h v (Lowercase v)

119 77h w (Lowercase w)

120 78h x (Lowercase x)

DEC. HEX. Symbol Symbol Description

19

Every character in the Unicode System has a numerical equivalent. Python
utilizes built-in functions such as chr() and ord() for these coding systems. Use
chr() to get the numerical value of a character and use ord() to get the character
equivalent to a numerical value.

Table 2-3 depicts Python print() commands, which use some of the above built-in
functions.

121 79h y (Lowercase y)

122 7Ah z (Lowercase z)

123 7Bh { (curly brackets or braces)

124 7Ch | (vertical-bar, vbar, vertical line or vertical slash)

125 7Dh } (curly brackets or braces)

126 7Eh ~ (Tilde; swung dash)

127 20h DEL (Delete)

DEC. HEX. Symbol Symbol Description

Table 2-2 ASCII Characters

Code Output
print(ord('A')) An Integer representing character A is 65

print(ord('a')) An Integer representing character a is 97

print(chr(65)) A character representing unicode 65 is A

print("\u221a") √ (The symbol of square root)

print("\u270E") ✎ (A symbol of a pen pointing at right)

print(“\u2709") ✉ (A symbol of an envelope)

Table 2-3 Some special symbols using ASCII extended characters

20

https://en.wikipedia.org/wiki/List_of_Unicode_characters

2.4. Practice Questions

1. Write a Python program to get a number, then calculate its squared and cubed
value.

2. Write a Python program to get a number such as n as input and then calculate
.

3. Write a Python program to get a number that contains three digits and then
display each digit on a single line.

4. Write a Python program to get a circle's radius and calculate its area.

5. Write a Python program to find the roots of a quadratic equation.

6. Write a Python program to get a name as input and display it five times.

7. Write a Python program to get today’s date as three integers and display it as
m/day/year.

8. Write a Python program to simulate the roll of a die.

9. Write a Python program to simulate the roll of a pair of dice.

10.Write a Python program to generate an even random number between one
and one hundred.

Go to 2.4 Practice Question Solutions.

nn

21

3. Decision Structures

Decision is the process of deciding something. This decision is always based on a
logical question or condition in programming languages. Decision structures, also
known as if-then-else or conditional statements, change the path of executing a
program. A program is a sequence of several lines of code. Anytime we have a
decision structure in a program, the program flow could go to different paths,
and it is all based on the given logical condition. Many times, a computer
problem can not be solved by executing sequential lines of codes, and alternative
paths of executions are needed, where based on a condition, the program could
take alternative paths. We use decision structures to handle these alternative
paths of programs.

For example, whether an integer is even or odd, we would like to display a
message; accordingly, we must have two separate printing messages in this
case, only one will execute based on the given input. Therefore, the control of
the program goes to different paths. Let us consider the following program:

Num=12

if (Num %2 ==0):

 print (“Even”)

else:

 print (“Odd”)

If the condition in front of the if statement is true, the program displays “Even”;
otherwise, it shows “Odd.” It would be impossible to show both messages. In
Python, the structure of a conditional statement is as follows:

If (question/condition):

 Action 1

else:

 Action 2

The indentation is required, and control of the program goes either to Action 1 or
Action 2. After both if and else statements, you need to include a colon. The if
and else statements must be aligned together. Spaces matter at the beginning of
lines but not elsewhere.

22

Comparison operations: A logical condition that uses numerical values can
incorporate operations such as less, less or equal, more, more and equal, equal,
and not equal to compare several operands, as depicted in Table 3-1.

Conditional statements can be combined by use of relational operators, as
discussed in Table 2-1.

3.1. Nested Decision Structures

Conditional statements can be nested, as it is possible to have a program with a
series of conditions that need testing. In the example given in section 3, Action 1
and Action 2 each could be another conditional statement such as the following:

if (Q1):

 if (Q2):

 Action 1

 else:

 Action 2

else:

 if (Q3):

 Action 3

 else:

 Action 4

Operation Meaning

< Less than

<= Less or Equal

> Greater

>= Greater or Equal

!= Not Equal

 = = Equal

Table 3-1 Comparison Operators

23

Since the logic of nested conditional statements can be complex, a more
straightforward approach is available, which is called an if-elif-else statement.

if(Q1):

 Action 1

elif(Q2):

 Action2

elif(Q3):

 Action 3

else:

 Action 4

In each conditional statement, if the condition is true, the statements following if
are executed, and if the condition is false, the statements following else are
executed. The following program finds the largest value among three numbers.

num1=0

num2=-1

num3=1

if(num1>=num2) and (num1>=num3):

 maximum=num1

elif(num2>=num1) and (num2>=num3):

 maximum=num2

else:

 maximum=num3

print("The maximum value is",maximum)

24

3.2. Practice Questions

1. Write a Python program to get a number and verify if it is divisible by five.

2. Write a Python program to get a number and verify if it is divisible by five or
by three.

3. Write a Python program to get a year and verify whether it is a leap or a
common year. A year is a leap year if it is divisible by four, except those years
divisible by a hundred are not leap years unless they are also divisible by four
hundred.

4. Write a Python program to get a date and check if it is a magic date. A date is
magical when you multiply month by day and get the year. For example,
February 12th, 2024 is a magical date: .

5. Write a Python program to get a number between one and five and convert it
to a Roman numeral.

6. Write a Python program to check if a given input is odd or even without using
remainder (%).

7. Write a Python program to get a word that contains three symbols and display
it in reverse order.

8. Write a Python program to get a word with a length of four as input and then
display each string element on one line.

9. Write a Python program to get a word with a length of four as input, then
switch the first and last elements and redisplay the new word.

10.Write a Python program to get a word with a length of four as input and verify
if it is a palindrome.

11.Write a Python program to get a word with a length of four as input and then
reverse it.

12.Write a Python program to get a word with a length of four as input, and if it
starts with ‘a’, replace ‘a’ with ‘A’ and redisplay the name; otherwise, display
the last two elements of the name.

13.Write a Python program to get a word, and if the length of the word is even,
extract the first element and display it; otherwise, display the last element of
the string.

2 × 12 = 24

25

14.Write a Python program to get a word with a length of four as input and count
the total number of times it contains ‘e’ or ‘E.’

15.Write a Python program to get a word with a length of four as input and then
replace every ‘e’ with ‘X.’

Go to 3.2 Practice Question Solutions.

26

4. Repetitions

Repetition is the recurrence of an action. In programming, it means repeating
something that has already been written. Imagine you need to write a program
to get a student’s name, last name, and ID and then display these on the screen.
A Python program to do so would be like the following example:

Name=input(“Please enter a name”)

Last=input(“Please enter a last name”)

Number=input(“Please enter an ID#”)

print(Name,Last,Number)

4.1. While Loops

Now imagine that you must write the above program for five hundred students.
One way is to copy the above program five hundred times, which is impractical.
And what if we had an even more significant number of students? A feasible way
is incorporating repetitions, and that means utilizing loops.

There are several ways that you can use loops. The first approach is called a
while loop. Let us have a closer look at a while loop. Generally, the structure of
the while loop is as follows:

while (condition):

 Here is the body of the loop

The loop's body is the part of the program that will be repeated; this part should
be indented. The total time of the repetition depends on the given condition at
the beginning of the while loop. This condition is either true or false.

• If the condition is true, the body of the while loop will be repeated.

• As soon as the condition is not valid anymore, the program's control goes
out of the loop and directly to the first line right after the while loop, and
repetition stops.

• If the condition is not valid, the while loop never begins.

27

• If the condition is always true, the program goes into an infinite loop, and
the programmer must halt the program by pressing external keys on the
keyboard to stop the loop.

• The condition must be updated inside the loop's body to ensure that the
while loop would not stick in an infinite loop.

To write a Python program to display numbers between one and five, we have:

n=1

while(n<6):

 print(n)

 n=n+1

Here, n begins at one, and if n is less than six, it prints the current value of n and
increases the value of n at each iteration of the while loop by one. To write a
Python program to display numbers between five and one, we have the
following:

n=5

while(n>0):

 print(n)

 n=n-1

Here, n begins at five, and if n is greater than zero, it prints the current value of
n and decreases the value of n at each iteration of the while loop by one. A
Python program to display the sum of numbers from one to ten would be:

n=1

total=0

while(n<=10):

 total=total+ n

 n=n+1

print(total)

Here, we need to have two variables: total, which represents the total
summation of numbers, and n, which represents the total ten numbers that we

28

are adding together. At each iteration inside the while loop, we need to add the
current value of n to the total summation.

In our last example, we write a Python program to display the following sum
. As you can see, the only difference is the increments of

n, which go by increments of ten at each iteration.

n=0

total=0

while (n<=100):

 total=total+ n

 n=n+10

print (total)

4.2. For Loops

There are several ways that you can utilize loops. The second approach is called
a for loop. Generally, the structure of the for loop is as follows:

for (condition):

 Here is the body of the loop

The condition can be written as a variable name in range (number of times to
repeat). As we saw in the while loop, the body of the loop is the part of the
program that will be repeated; this part should be indented. The total time of the
repetition depends on the given condition at the beginning of the for loop. This
condition is always a Boolean variable.

• The condition should be given as a range.

• Elements of the range should be separated by commas and listed inside a
set of brackets.

Python has a built-in function, which is called range. The range () function
returns a sequence of numbers. By default, it begins at zero, with increments of
one.

• range (m)

✦ Generates numbers from 0 up to and including m-1.

0 + 10 + 20 + 30 + . . . + 100

29

• range (m, n)

✦ Generates numbers from m up to and including n-1.

• range (m, n, k)

✦ Generates numbers from m up to and including n-1 with the increments
of k.

Now, let us rewrite the programs that we discussed in section 4-1, by using for
loops. To write a Python program to display numbers between one and five, we
have the following:

for n in range (1,6)

 print(n)

Here, n begins at one, and increases by one at each iteration of the loop, the last
value of n is five.

To write a Python program to display numbers between five and one, we have
the following:

for n in range (5,0,-1)

 print(n)

Here, n begins at five and decreases by one at each iteration, the last value of n
is 1.

A Python program to display the sum of numbers from one to ten would be as
follows:

total=0

for n in range (1,11)

 total=total+ n

print(total)

Here, we need to have two variables: total, which represents the total
summation of numbers, and n, which represents the total ten numbers that we
are adding together. At each iteration inside the for loop, we need to add the
current value of n to the total summation.

30

In our last example, we write a Python program to display the following sum
. As you can see, the only difference is the increments of

n, which go by increments of ten at each iteration.

total=0

for n in range (0,101,10)

 total=total+ n

print(total)

0 + 10 + 20 + 30 + . . . + 100

31

4.3. Practice Questions

1. Write a Python program to display numbers between one and five.

2. Write a Python program to display numbers between five and one.

3. Write a Python program to show at which temperature Fahrenheit and
Centigrade have the same reading.

4. Write a Python program to calculate the following sum: .

5. Write a program to calculate the following sum: .

6. Write a program to display numbers between one and five using a for loop.

7. Write a program to display numbers between five and one using a for loop.

8. Write a program to simulate rolling a pair of dice and show how many tries it
takes to get a pair.

9. Write a program to get five numbers as input and calculate their average.

10.Write a program to get inputs from the keyboard, where “-1” indicates the
end of inputs, and then calculate their average.

11.Write a program to check whether a given word is a palindrome.

12.Write a program to get a word as input and replace every string character
with its first character; for example,“abcd” would change to “aaaa”.

Go to 4.3 Practice Question Solutions.

1 + 2 + 3 + ... + 10

1
1

+
1
2

+
1
3

+ ... +
1
10

32

4.4. Nested Loops

A nested loop means a loop inside another loop, and these are typically used for
working with two dimensions. When a loop is nested inside another loop, the
inner loop runs many times inside the outer loop. The inner loop will be re-
started in each iteration of the outer loop. The inner loop must finish all its
iterations before the outer loop can continue to its next iteration. Consider the
following program:

for i in range (1,4):

 for j in range (1,7):

 print ("*", end=" ")

 print ("\n")

Here, for every iteration of the outer loop, the program must finish all iterations
of the inner loop. The outer loop iterates three times, and the inner loop iterates
six times. The program generates three lines; on each line, it prints six asterisks,
(as depicted in Figure 4-1).

33

Figure 4-1

4.5. Practice Questions

1. Write a Python program to display the pattern in Figure 4-2.

2. Write a Python program to display the pattern in Figure 4-3.

3. Write a Python program to display the pattern in Figure 4-4.

34

Figure 4-2

Figure 4-3

Figure 4-4

4. Write a Python program to display the pattern in Figure 4-5.

5. Write a Python program to display the pattern in Figure 4-6.

6. Write a Python program to display the pattern in Figure 4-7.

7. Write a Python program to display the pattern as depicted in Figure 4-8.

35

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

8. Write a Python program to display the pattern as depicted in Figure 4-9.

9. Write a Python program to display the pattern as depicted in Figure 4-10.

10.Write a Python program to display the pattern as depicted in Figure 4-11.

Go to 4.5 Practice Question Solutions.

36

Figure 4-9

Figure 4-10

Figure 4-11

5. Functions

A function is a block of code that only runs when called. You can pass data into a
function. Therefore, you can write a code block, call it a function, and then use it
many times. A large Python program can be broken into several functions by
isolating each task into one function.

To call a function, write the function’s name followed by two parentheses (). The
same set of restrictions for a variable’s name is applied while naming a function.
The structure of a function in Python is as follows:

def function’s name():

 Body of the function

The first line of a function is its definition and is called the function header; it
begins with the keyword def. Every line of code that is part of a block of codes is
indented. To run a function, it must be called. To call a function, write its name
followed by a set of parentheses.

Let us consider the following program:

def func1():

 print("you just called function1")

def func2 ():

 print("you just called function2")

for m in range(0,3):

 func1()

 func2()

Here func1 and func2 are two functions we defined; each prints a literal string. In
the for loop, each function is called three times. When you define a function, it is
created, but you still need to call it. When a function is called, the program's
control is transferred to that function.

37

Now let’s consider the following program:

m=20

def func1():

 m=100

func1()

print (m)

variable m is initialized with a value of twenty; in function func1(), there is also a
variable m, two different variables with the same name. Variable m in func1() is
a local variable, and any changes that happen to m in func1() do not affect
variable m that is outside of fucn1().

A local variable is any variable that is created inside of a function and is only
accessible from inside of the function. Several functions can have variables with
the same name, and they do not affect each other, as they cannot access each
other’s variables.

5.1. Void and Value Returning Functions

One way to categorize functions is based on the value that they return. A void
function is a function that does not return any value; it executes its block of code
and then terminates. On the other hand, a value-returning function executes its
block of code and then returns a value to the program that called it. In the
following example, func1() is the function that prints a variable and terminates;
it is a void function.

def func1():

 print(m)

A value-returning function must have a return statement as the last line in the
function. In the following example, func1() is the function that returns a value
stored in variable m; since it is returning a variable, func1() is a value-returning
function. A function may return more than one value; in Python, if you have
more than one value to return, the result is displayed as a list, such as (a,b,c),
members in a set of parentheses separated by commas.

def func1():

 return(m)

38

5.2. Passing Data to and From Functions

Data passed to a function when called is referred to as an argument, and the
variable that receives an argument is called a parameter. Consider the following
example:

def func1(word):

 m=word[0]

 return (m)

func1(name)

In this example, the name is data passed to func1() and is an argument, and the
word receives this argument and is called a parameter. In this example, func1()
extracts and returns the first symbol of the argument word.

In the following example, func1() has two parameters as indicated in its header,
it will append them together and display the result. When we call this function we
need to list two parameters, otherwise it would be a compile error.

def func1(fname,lname):

 print(fname+" "+lname)

func1(“Steven","Jobs")

In the following example, func1(), we use a loop to print all elements of a given
list.

dir=["West","East","North","South"]

def func1(dir):

 for d in dir:

 print(d)

func1(dir)

39

5.3. Mathematical Built-in Functions

In addition to writing your defined functions, Python has built-in mathematical
functions that you can use. And, like using random numbers, you need to import
a standard library into your Python program. Some built-in functions and
variables in Python that you can incorporate into your program are as follows:

• sqrt(x): to display the square root of a number.

 import math

 print(math.sqrt(64))

• floor(x): to round down the number to the nearest integer.

 import math

 x=123.45

 print(math.floor(x))

• ceil(x): to round up the number to the nearest integer.

 import math

 x=123.45

 print(math.ceil(x))

• exp(x): to return E raised to the power of x.E is the base of the natural
system of logarithms or the Euler’s number (2.71).

 import math

 x=2

 print(math.exp(x))

• math.e: to return E, the base of the natural system of logarithms or the
Euler’s number.

 import math

 print(math.e)

40

• math.pi: to return the value of PI (3.14149).

 import math

 print(math.pi)

• sin(x): to return the sine of the x, which should be in radians.

 import math

 x=90

 print(math.sin(x))

• cos(x): to return the cosine of the x, which should be in radians.

 import math

 x=0

 print(math.cos(x))

• tan(x): to return the tangent of the x, which should be in radians.

 import math

 x=90

 print(math.tan(x))

• log(x): to return the logarithm base 2 of x.

 import math

 x=2

 print(math.log(x))

41

5.4. Practice Questions

1. Write a Python program to generate a random number between zero and five,
then simulate a magic ball. You may select your message from these options:
without a doubt, better not tell you now, my sources say no, ask again later,
outlook hazy.

2. Write a Python program to get a word from a user through the keyboard and
then display the first character of that word.

3. Write a Python program to get a word from a user through the keyboard and
then display the first character of that word. Extracting the character should
be done in a function, but displaying the character should be done in the main
program.

4. Write a Python program to get two numbers as input and calculate their
average.

5. Write a Python program to get a degree in Fahrenheit and convert it to
Celsius.

6. Write a Python program to get an input (integer) and calculate its factorial,
where the factorial of a number is denoted by n! and is the product of all
positive integers less than or equal to n. For example: .

7. Write a Python program to generate the first ten Fibonacci numbers, where
each is the sum of the two preceding ones. These are numbers in the
Fibonacci series: .

8. Write a Python program to get a word from a user through the keyboard and
then reverse the word through the use of a function.

Go to 5.4 Practice Question Solutions.

5! = 5 × 4 × 3 × 2 × 1

1, 1, 2, 3, 5, 8, ...

42

6. Recursion

When a function calls itself, it is called a recursive function. Making a function call
itself is a way to break down complicated problems into more straightforward
problems that are identical in structure to the original problem. In recursive
programming, there is always one base case, which does not require recursion
and stops the chain of recursive calls.

Any problem that can be solved recursively can be solved by using loops.
Repetitive problems are more easily solved using recursion.

Example 1: a recursive program to calculate the summation of the first ten
positive integers.

n=10

def Sum (n):

 if (n==0):

 return 0

 else:

 return Sum(n-1)+n

print (Sum(n))

To calculate the summation of the first ten positive integers, we need summation
of the first nine positive integers and then add ten to that summation; however,
to calculate the summation of the first nine positive integers, we need
summation of the first eight positive integers and then add nine to that, and
inductively for each new summation you need the previous summation. The base
case here is the summation of numbers from zero to zero, which is zero.

43

Example 2: a recursive program to calculate the factorial of five, where the
factorial of a non-negative integer n is a product of all positive integers less than
or equal to n.

n=5

def Fact(n):

 if (n==1):

 return 1

 else:

 return n*Fact(n-1)

print (Fact(n))

The n factorial also equals the product of n with the next smaller factorial.

Example 3: a recursive program to generate the first ten elements of the
Fibonacci sequence. The Fibonacci sequence is a sequence in which each number
is the sum of the two preceding ones. The sequence starts with two ones.

def Fib (n):

 if ((n==1) or (n==0)):

 return 1

 else:

 return Fib(n-1) +Fib(n-2)

for i in range (0,10):

 print (Fib(i), " ", end= "").

44

7. File Access

A file is a series of bytes used to store data; this data is organized in a specific
format; some are easy to read by a human, like text files. However, all files are
then translated into binary for processing by the computer. Every time that you
use Word processing programs or image editors, you work with files.

For every program that we wrote, that required the user to enter data, as the
input data was not retained at a permanent memory location, we needed to re-
enter the data for each run of the program. To save the data between the runs,
one way is to save the data on a file, which means saving the data on the
computer’s disk, one form of permanent memory.

You can read and write all types of files; in this chapter, we only work with text
files. In a text file, data is encoded as a text using ASCII or Unicode formatting,
therefore even numerical values are stored as a series of characters. A text file
can be opened and viewed by any text editor.

There are two different ways to access data in a file, sequential access and
random access.

In sequential access, you must access data from the beginning of the file to the
end of the file; you can not skip any piece of data; you have to read all the data
that comes before the desired data. On the other hand, in random access, direct
access to any piece of data in the file is possible. This is like accessing different
tracks on a CD or DVD.

In a text file, each line of the text is ended with the new line character (‘\n’). You
can open a file, read from it, or write on it; if the file does not exist, it will be
created; you can also append data to a file if it already exists.

Remember that at the end of a Python program, you should permanently close
every open file, freeing up the memory space used by the opened files. When a
file is closed, the connection between the file and the program is removed, and
should you need to access the same file, you need to reopen the file.

45

7.1. Read From a File

Retrieving data from a file is known as reading from a file. Suppose you need to
access a text file to read it; the following statement reads the first line of the file
and copies it into a string line.

line=open('filefortest.txt',‘r’)

If the text file is not in the current subdirectory, then you must specify the entire
path to your file.

line=open('c:/users/Agah/desktop/filefortest.txt',‘r’)

• You can use readline(), which reads a line from a file and returns it as a
string.

• You can use read(), which reads the entire file.

• You can use read(n), which reads n bytes of a file.

• ‘\n’ is considered two bytes. It marks the location where a new line begins
in a file.

• When strings are printed, ‘\n’ causes an extra blank line to appear.

7.2. Write to a File

Every file has a name and a type; the type of a file is a series of three
characters, which appear after the filename followed by a dot. The .txt indicates
that the file is a text file.

To write on a file in Python, first, you need to open the file for writing. To write on
a file, you can use the same print () function we used previously. When you are
done accessing a file, you must close the file.

To convert a numerical value to a string, use the str () function.

46

7.2.1. New File

To create a new file, you can use the following statements:

file=open('filefortest.txt','w')

file.write(“WCU \n”)

file.write(f‘{“abc”}\n’)

file.close()

Here ‘w’ indicates that the file is being accessed for writing, and a new file will be
created. If the file already exists, it will be overwritten, and the data on the
original file is not retrievable anymore. The statement open(), opens the file for
writing, and write(), writes data on the file; every time that you write on a file, it
is in the form of a string; you can either use string literals or use F-formatting to
write the data.

7.2.2. An Existing File

If the file already exists and you wish to append data to the end of the existing
file, then use the following statements:

file=open(‘filefortest.txt','a')

file.write(“WCU \n”)

file.write(f‘{“abc”}\n’)

file.close()

Here, ‘a’ indicates that the data will be appended to the end of the existing file.

7.3. Notable Built-in Functions

When a file is opened for reading for the first time, a read pointer is positioned at
the beginning of the file, after the first read, it is maintained to mark the location
of the next item that will be accessed from the file.

As discussed in section 7.1, ‘\n’ separates items in a file, and it causes an extra
blank line to appear in a file. If you need to remove the extra line, you can utilize
a built-in function called rstrip(). This function strips a specific character from the
end of a given string. For example, name.rstrip(‘\n’), removes the trailing ‘\n’
from the end of the string name.

47

Each time that you open a file for writing, data is written on the file as strings.
Python has a built-in function str(), which converts a value into a string, which
you can use to directly write numerical values as strings on a file.

48

7.4. Practice Questions

1. Write a Python program to read a file and print every line of the file on the
screen by using a for loop.

2. Write a Python program to read a file and print every line of the file on the
screen by using a while loop.

3. Write a Python program to read a file and print the total number of lines in the
file.

4. Write a Python program to read a file and print every word in the file that
begins with ‘A’.

5. Write a Python program to get an input from the keyboard and then add it to
an existing file.

6. Write a program in Python to generate five random numbers and write them in
a file.

7. Write a program in Python to read a file and check if it contains a specific
word.

8. Write a program in Python to read a file and count the total number of e’s in
the file.

9. Write a program in Python to write five numbers on a file and then display
their summation.

Go to 7.4 Practice Question Solutions.

49

8. Lists

A list is an entity that contains multiple data items. Use square brackets to
indicate the start and end of the list and separate items in a list with commas. []
is the empty list. You can change items that are in a list, which means a list is
mutable, a programmer may add or remove items from a list. We use lists to
store multiple items in a single variable. A list of items enables a programmer to
keep related data values together.

The Indexing and slicing that we used as built-in functions over strings can be
utilized on lists too. Each item of a list is called an element of the list. Here is a
list of four integers:

num=[1,2,3,4]

A list may contain elements that have different types. For example:

num=[1,`east’,`west’,2.5]

is a list that contains four different elements of three different types. You can use
the print() function to print entire elements of a list.

Similar to strings, num[0] is the first element of the list num, and also num[:3]
returns the first three elements of the list, which is one slice of a list, the same
concept that we had with strings. Negative indexing means to start from the end,
therefore -1 refers to the last element of the list.

You can use the “+” operator to add one list to the end of another list. And use
the ‘*’ operator to repeat a list. For example [‘*’]*13, displays thirteen ‘*’.

In Python you can use the following built-in functions on a list:

• index(a): to return the index of the first occurrence of a in the list;
consequently the output of the following program is 1.

 num=[1,2,3,4,5]

 print(num.index(2))

50

• len: to return the total number of elements in a list; consequently the
output of the following program is 5.

 num=[1,2,3,4,15]

 print(len(num))

• max: to return the largest elements in a list; consequently the output of
the following program is 5.

 num=[1,2,3,4,5]

 print(max(num))

• min: to return the smallest element in a list; consequently the output of
the following program is 1.

 num=[1,2,3,4,5]

 print(min(num))

• remove (a): to remove the first occurrence of the element a from the list;
consequently the output of the following program is [1, 2, 4, 5].

 num=[1,2,3,4,5]

 num.remove(num[2])

 print(num)

• sort: to sort elements in a list in ascending order; consequently the output
of the following program is [-5, -2, 1, 4, 31].

 num=[1,-2,31,4,-5]

 num.sort()

 print(num)

• sum: to return the sum of the elements in a list; consequently the output
of the following program is 1.

 num=[1,-2,3,4,-5]

 print(sum(num))

• append: to add an element to the end of an existing list.

51

• clear: to remove all elements from a list.

• copy: to return a copy of the list.

• count: total number of elements.

• reverse: to reverse the order of items in a list.

Here is a Python program that utilizes the above five functions:

 num=[1,2,3,4,5]

 num.append(7)

 num.append(num[0])

 num.append(num[-2])

 print(num)

 num=[1,2,3,4,5]

 num.clear()

 print(num)

 num=[1,2,3,4,5,4,4]

 print(num.count(4))

 num=[1,2,3,4,5]

 num.reverse()

 print(num)

52

You can copy a list into a file. The following example creates a file for writing and
by use of a for loop, it copies all elements of a list onto a file.

num=[1,-2,3,4,-5]

myfile=open("data.txt","w")

for n in num:

 myfile.write(str(n))

 myfile.write("\n")

myfile.close()

You can copy a file into a list. The following example reads a file and copies all
lines of the file into a list.

myfile=open("data.txt","r")

newlist=myfile.readlines()

myfile.close()

print(newlist)

The following example checks to see if an item is an element of a given list.

mylist=["West","East","North","South"]

if "West" in mylist:

 print("Yes, West is in the list")

else:

 print("No it is not in the list”)

The following example inserts a new element into an existing list.

mylist=[“West","East","North","South"]

mylist.insert(2,”Ocean”)

As a result, the new list contains five elements and the third element is Ocean.

53

The following example appends an item as the last element to a given list.

mylist=[“West","East","North","South"]

mylist.append(”Ocean”)

As a result, the new list contains five elements and the fifth element is Ocean.

The following example appends an entire list to the end of another list.

mylist=["West","East","North","South"]

newlist=["Ocean","Sea","Creek"]

mylist.extend(newlist)

54

8.1. Practice Questions

1. Write a Python program to replace every element of a list with its square.

2. Write a Python program to find the smallest and the second smallest elements
in a list.

3. Write a Python program to remove the first and last elements of a list and
redisplay the new list.

4. Write a Python program to calculate the average of the elements in a list.

5. Write a Python program to replace every even element of a list with “*”.

Go to 8.1 Practice Question Solutions.

55

9. Arrays

As mentioned in chapter eight, Numpy is a library in Python that can generate
lists, matrices, linear algebra, and so on. Using Numpy, you can generate arrays.
Arrays are used to keep the related data at the same location in the memory.
And since arrays are stored at one continuous location in memory, it is quicker to
access elements of an array than elements of a list. Therefore by using arrays,
programmers store multiple values as one variable. And by using each element’s
index we can quickly retrieve a particular element of an array. Consider the
following Python program:

import numpy

MyArray=numpy.array([-1,0,1])

print(MyArray)

In the above Python program, MyArray is the name of the array that contains
three elements: -1,0,1. The following Python program generates a two-
dimensional array. An array can have any number of dimensions.

import numpy

B=numpy.array([[-1,0,1],[-2,0,2]])

print(B)

To access each element of an array, you need to refer to its index, and as with
lists, you begin from index zero. In the above program, B[0][0]=-1, is the
element on the first row and the first column.

You can select more than one element of an array at a time. A[m:n] means
several elements from array A, from index m to (not including) index n.

56

9.1 Practice Questions

1. Write a Python program to generate an array and reverse it, without
changing the order of elements in the original array.

2. Write a Python program to generate an array as input and reverse it. The
original array will be reversed.

3. Write a Python program to find the common elements in two arrays.

4. Write a Python program to find repeated items in an array.

5. Write a Python program to find the second largest value in an array.

6. Write a Python program to check if an array contains a value.

Go to 9.1 Practice Question Solutions.

57

10. Plotting Graphs

Matplotlib is a library in Python that you can utilize for the visualization of a
graph. However, it is not part of the standard Python library, and you need to
install it. To do so you need to open a terminal and on a Mac type:

sudo pip3 install matplotlib

and if you are using a Windows system, then enter the following command:

pip install matplotlib

Sudo is a command in Unix-based operating systems that grants administrator
privileges to a user.

PIP is a package manager for all the libraries that you may need to import into
your Python programs.

Once matplotlib is installed, you can import it into your Python programs.

Plot(x,y) is a built-in function to draw lines in a graph, where x is the horizontal
axis and y is the vertical axis. The plot () function creates a line that connects a
series of data points with straight lines.

Let us consider the following Python program:

import matplotlib.pyplot as plt

x=(1,2,3,4,5,6,7,8)

y=(0,50,100,50,-50,0,100,-50)

plt.plot(x,y,marker='s',linestyle=":",color="g",linewidth=2.0)

plt.show()

Here, import matplotlib.pyplot as plt means that you can refer to that library as
plt. When you use plot(), markers are used to emphasize each point on a graph
with a specified marker, line style indicates the style of the line, color indicates
the color of the line, and line width indicates the width of the line, all of which
are line properties that you can use as built-in functions. Finally, to display a
graph on the screen, you need to use another built-in function show(), as plot()
builds the graph in memory but does not display it by default. Figure 10-1 is the
output of the above program.

58

Table 10-1 indicates color choices for colors in any graph.

You can use the following built-in functions to draw graphs:

• bar(): to draw bar graphs.

• grid(): to add grid lines to the plot.

• pie(): to draw pie charts.

• subplot(m,n,p): to show multiple graphs, in m rows, n columns and the
current plot is the plot number p.

Color Meaning

B Blue

G Green

R Red

C Cyan

M Magenta

Y Yellow

K Black

W White

Table 10-1

59

Figure 10-1

• title(): to add a title to a graph.

• xlabel() and ylable(): to add a title to the x and y axes.

• xlim() and ylim(): to change the lower and upper limits of numbers on the
x and y axes.

The output of the following Python program is depicted in Figure 10-2, here we
have used a subplot.

import matplotlib.pyplot as plt

x=(1,2,3,4,5)

y=(0,50,100,50,-50)

plt.subplot(2,1,2)

plt.plot(x,y,marker='s',linestyle=":",color="g",linewidth=2.0)

plt.grid()

x=(1,2,3,4,5)

y=(-50,0,10,100,50)

plt.subplot(2,1,1)

plt.plot(x,y,marker='o',linestyle=":",color="r",linewidth=2.0)

60

Figure 10-2

plt.grid()

plt.show()

The output of the following Python program is depicted in Figure 10-3.

import matplotlib.pyplot as plt

x=(1,2,3,4,5,6)

y=(100,-10,10,50,20,0)

plt.bar(x,y,width=0.1,color='r')

plt.show()

NumPy, which stands for Numerical Python is also another Python library, that
you can use for working with linear algebra, matrices, and so on.

Assume that you need to draw a graph for Sine(x). Since the Sine function is
part of Numerical Python, you need to import it into your program. The output of
the following Python program is depicted in Figure 10-4.

import matplotlib.pyplot as plt

import numpy as np

x=np.arange(0,10,0.05)

y=np.sin(x)

61

Figure 10-3

plt.plot(x, y)

plt.show()

The meaning of import numpy as np is that you can refer to that library as np. In
this Python program, we used arange(n,m,p), which means n is the start of the

interval, m is the end of the interval and p is the spacing between the values.

The output of the following Python program is depicted in Figure 10-5. Sine and
Cosine functions are part of Numerical Python.

import matplotlib.pyplot as plt

import numpy as np

z=np.arange(0,360,10)

x=np.cos(z)

y=np.sin(z)

plt.plot(x,y)

plt.show()

62

Figure 10-4

The output of the following Python program is a pie chart, which is depicted in
Figure 10-6.

import matplotlib.pyplot as plt

x=(10,20,30,90)

lab=("west","east","south","north")

63

Figure 10-6

Figure 10-5

plt.pie(x,labels=lab)

plt.show()

64

11. Object Oriented Programming

Python is an object-oriented programming language. This model of programming
is based on objects. An object is an entity that has predefined attributes and
behavior. The Python program makes objects interact with other objects. Class is
the template for an object, and an object is an instance of a class.

A smartphone is an object. Examples of attributes are traits such as screen size,
camera, weight, or number of external ports. Examples of behavior are taking a
picture, recording a movie, or connecting to Wi-Fi.

Class is a blueprint of the object. Every cell phone that is released by a particular
manufacturer will come with certain predefined attributes and behavior, such as
the examples above. The class provides all the common elements.

The statement

class Vehicle:

creates one class, which is named Vehicle. The statement

v1=Vehicle()

creates one instance of the class vehicle, which is called v1.

In programming, we refer to behavior as methods or functions. The following
Python program consists of a class car. Every car has a model and a year
associated with it. C1 and c2 are two objects and are instances of the class car.

Class Car:

 def __init__(self,model,year):

 self.model=model

 self.year=year

c1=Car(“TESLA”,2024)

c2=Car(“FERRARI”,2023)

print(c1.model,”***”,c1.year)

print(c2.model,”****”,c2.year)

65

11.1 Constructor

A constructor is a method for initializing objects of a class. All classes have a
constructor, which is executed when the class is being initiated. In Python, a
constructor’s name is always init and it must have a prefix and suffix of double
underscores. Since it is a method, you must include def before its name. As with
any other method, a constructor may or may not accept any arguments. A
default constructor does not accept any arguments. A parametrized constructor
accepts arguments, and in this case, you can pass data during object creation,
which is used to initialize the instance members.

Objects can also have methods. The following Python program depicts one class
called vehicle, v1 is one instance of the class, and Driver is one method that
belongs to the object. Every object has three attributes, model, year, and
number of drivers.

class Vehicle:

 def __init__(self,Model,year,NoD):

 self.model=model

 self.year=year

 self.NoD=NoD

 def Driver(self):

 print("Number of Driver" + self.NoD)

v1=Vehicle(“TESLA",2024,0)

v1.driver()

Self represents the instance of the class; it is a reference to the current instance
of the class. Use self to create an attribute that belongs to an object that self is
referencing. This is called an instance of an object.

An object cannot be created without a constructor, if you do not declare a
constructor in your program, Python generates one by default.

11.2 Inheritance

Inheritance allows one class to inherit attributes and methods from another.
Parent class or base class is the class being inherited from, and child class is the

66

class that is inherited from a parent class. The child class is a derived class from
the base class; the child class creates an instance of the class. Child class may
override the methods of its parent class. Overriding means that a child class has
an implementation of a method that is already defined in the parent class.

In the flowing Python program shown below, the class vehicle is the parent class,
and the car is the child class. Therefore, the class car has the same properties
and methods as the vehicle class.

class vehicle:

 def __init__(self,model,year):

 self.model=model

 self.year=year

 def printcar(self):

 print(self.model,self.year)

class car(vehicle):

 def __init__(self,model,year):

v1=vehicle(“Toyota",2000)

v1.printcar()

v1=car("Honda",2020)

v1.printcar()

When you include the following in the child’s class:

 def __init__(self,model,year):

then it no longer inherits this method and instead uses its own, which is called
overriding.

11.3 Polymorphism

Class polymorphism is when multiple classes have the same method name. For
example, a class shape() by itself does not have any definition of area. However,
if you consider class triangle, circle, or hexagon, they all have the concept of
area in common, and you could have a separate method named area() for each

67

one of them, which calculates the area of that particular shape. This is depicted
in the following Python program.

class Shape:

 def area(self):

 print("Needs more specifications")

class Circle(Shape):

 def area(self):

 print("3.14*r*r")

class Triangle(Shape):

 def area(self):

 print("h*b/2")

s1=Shape()

c1=Circle()

t1=Triangle()

s1.area()

c1.area()

t1.area()

68

12. Using Python Packages

Python has several libraries that make analyzing data very easy. It also contains
highly powerful machine-learning libraries. The libraries that we will utilize are for
data analysis, visualization, machine learning, and data mining.

To get ready to work in a Python environment, you need to install some
packages. A package is an archived file that we download from the internet and
install on your computer. To be able to run the programs that are provided in this
book, you need to be sure that you are using the latest version of each released
package.

At the time of writing this book, the latest edition of pip is 23.3.1, and the latest
edition of numpy is 1.26.3. Follow these directions to install these packages:

To install a given package, you need to run this command:

pip install name of the package.

In a Python shell type-in the following commands:

Pip install -U NumPy

Pip install --upgrade pip

Pip install network

Pip install matplotlib

Pip install fpgrowth_py

• Pip is a management system written in Python, which you can use to
install other packages. Pip connects to an online repository of packages.

• Networkx is used for the creation and studying the structure of networks
and graphs. It is free software, which means users can run the software,
change it, and distribute it. The term “free” means users have the freedom
to use the software in any way that they choose, but the source of the
software is not openly available.

• Matplotlib is a plotting library used for static and interactive visualizations
in Python. It is designed to be like MATLAB, can use Python, is available for
free, and is an open-source software. Open-source software is freely

69

https://pypi.org/project/pip/
https://networkx.org/
https://matplotlib.org/

available and can be modified and redistributed, by encouraging open
collaborations.

• Numpy is a library for Python programming, where the type and size of
data, arrays, and mathematical functions are supported. Numpy is the
fundamental package for scientific computing with Python and is an open-
source software.

• fpgrowth_py is a Python package used for frequent pattern mining and
associations in data sets.

• “-U” or “—upgrade” means upgrade the current edition to the latest
version.

Now that you have installed the above packages, you can import them into your
Python programs. If the Python interpreter generates errors, it means one or
more packages have not been installed correctly. All Python packages are
available at the Python Package index.

70

https://numpy.org/
https://pypi.org/project/pyfpgrowth/
https://pypi.org/

13. Python and Graph Theory

A graph is a structure, which contains vertices (nodes) and edges. Graphs can be
used to represent acquaintances between people such as friendship relationships
on Facebook, followers on X (Twitter), and so on. In each graph, each edge
connects two vertices, and each of the vertices is called an endpoint. If there is
an edge between two vertices, those two vertices are called adjacent nodes.

A simple graph is a graph where no two edges connect the same pair of vertices.
A railway system between two cities represents a simple graph. A graph with
multiple edges connecting the same vertices is called a multigraph. For example,
imagine a graph where vertices are cities in a country and edges are direct flights
between two cities.

A graph may be directed or undirected; if it is needed to assign a direction to an
edge between two vertices, then the graph is directed. For example, being a
follower of a person on an online social network makes a graph a directed graph.
In some online social networks, certain people can influence others. Therefore, a
directed graph can be used to represent when one node influences another node;
there is a direction assigned to the edge between the two vertices. A directed
multigraph can be utilized to represent text messages sent and received between
two phone numbers.

The degree of a vertex in an undirected graph is the total number of edges that it
touches. In a directed graph the total number of edges that are incoming to a
node is called its in-degree, and the number of edges that are outgoing from a
node is called its out-degree.

A path is a sequence of edges that begin at one node of a graph and traverses
from one node to another node along the edges of the graph. For example, two
people on an online social network are linked where there is a path between the
two. This path could represent influence, such as being a follower of a person or
retweeting messages in a network.

In a graph, the shortest path is a path between two nodes such that it contains a
minimized number of edges. Also, the closeness centrality of a node is the
average length of the shortest path between the node and all other nodes in that
graph. Therefore, a node’s centrality indicates the number of shortest paths that
it is part of. The higher the number of centralities, the more important the node
is.

71

13.1 Networkx

Networkx is a Python package for the creation and analysis of networks. A
network could be an online social network, or a graph that represents
friendships, sending the receiving messages such as tweets, and so on. You can
use Networkx over large data sets; you can use it to design a new algorithm or
build network models. To create a graph with no edges and no nodes, you can
execute the following Python program:

import networkx as nx

G = nx.Graph()

Using the kite_graph data set (a data set is any collection of data), which is part
of the Networkx package, the output of the following Python program is depicted
in Figure 13-1, where we have 10 vertices and 18 edges. In Networkx, you can
use graph objects to generate graphs. A directed graph is specified by the class
DiGraph() and a multigraph is specified by the class MultiGraph().

import networkx as nx

import matplotlib.pyplot as plt

G = nx.krackhardt_kite_graph()

nx.draw_networkx(G)

plt.show()

72

Figure 13-1

In the above program, we can examine the degree of each node; for example,
print(G.degree(3)) will display five as it is the degree of node number three. Or
print(G.adj[3]) will generate the following output, which is the list of all of the
adjacent nodes to node number three.

{0: {}, 1: {}, 2: {}, 4: {}, 5: {}, 6: {}}

The output of the following Python program is depicted in Figure 13-2. Since G is
a directed graph, add.edge(m,n) adds an edge from node m to node n.

import networkx as nx

import matplotlib.pyplot as plt

G = nx.DiGraph()

G.add_edge(1,2)

G.add_edge(1,3)

G.add_edge(2,1)

G.add_edge(2,4)

nx.draw_networkx(G)

plt.show()

73

Figure 13-2

The following Python program prints the node centrality of each node in a kite
graph, as given in Figure 13-1.

import networkx as nx

import matplotlib.pyplot as plt

G = nx.krackhardt_kite_graph()

print(nx.betweenness_centrality(G))

And as you can see the node with the highest centrality is node number seven.

{0: 0.023148148148148143,
1: 0.023148148148148143,
2: 0.0,
3: 0.10185185185185183,
4: 0.0,
5: 0.23148148148148148,
6: 0.23148148148148148,
7: 0.38888888888888884,
8: 0.2222222222222222,
9: 0.0}

The following Python program displays the degree centrality of each node in a
kite graph, given in Figure 13-1.

import networkx as nx

import matplotlib.pyplot as plt

G = nx.krackhardt_kite_graph()

print(nx.degree_centrality(G))

And as you can see the node with the highest node centrality is node number
three.

{0: 0.4444444444444444,
1: 0.4444444444444444,
2: 0.3333333333333333,
3: 0.6666666666666666,
4: 0.3333333333333333,
5: 0.5555555555555556,
6: 0.5555555555555556,
7: 0.3333333333333333,
8: 0.2222222222222222,
9: 0.1111111111111111}

74

G.number_of_nodes()

and

G.number_of_edges()

respectively, display the total number of nodes and the total number of edges in
a graph.

G.remove_edge(m,n)

removes the edge between node m and node n.

13.2 Matplotlib

Many utilities that you can use in Matplotlib are imported under the plt alias. Use
the following command to use the package as plt in your Python programs:

import matplotlib.pyplot as plt.

• Plot() is used to draw a line between two points.

• Use marker() to mark each point on a line with a specified marker and use
ms to set the size of the marker.

75

Figure 13-3

The following program draws a line graph, as depicted in Figure 13-3:

import matplotlib.pyplot as plt

import numpy as np

y=np.array([-1,1,-0,-4])

plt.plot(y,marker='*',c="red" ,ms=15)

plt.show()

76

14. Python and Machine Learning

When you improve your performance based on your observations of past events,
learning occurs. Learning is needed because you cannot anticipate all possible
situations that can occur in the future.

Machine Learning is the study of statistical algorithms that can learn from data;
It is the process of analyzing data and predicting the possible outcomes. Perhaps
classification is the most basic form of analyzing data. An example of this is an
incoming email being marked as spam or not spam, and this marking classifies
emails into two classes.

There are three different types of data: numerical, categorical, and ordinal.
Numerical data can be counted, such as the total number of emails that one
receives, or it can be measured data, such as the size of an attachment to an
email. Categorical data are not measured in numbers; for example, a person’s
gender cannot be measured numerically. Ordinal numbers are non-numerical but
with an implied order, such as a rating that you provide for an item listed on
Amazon. There are different techniques that you may apply to data based on its
type.

There are three types of learning: supervised learning, unsupervised learning,
and reinforcement learning.

• In supervised learning through a computer program, a computer learns
from the inputs to generate the desired output. A computer observes
pairs of input-outputs and the correlation between them. The input could
be an image, and the output be a traffic light. Therefore, when someone
acts as a teacher, it is thus called supervised learning.

• In unsupervised learning, a computer must find patterns within the data.
There is no learning process; a spam-detecting system may use
unsupervised learning to classify different emails into several possible
spam categories, each with a different probability of being spam. Then,
each category uses supervised learning to learn how many of those emails
were a spam message.

• In reinforcement learning, an agent must interact with the environment
dynamically; interactions come in the form of rewards and punishments.
The goal is to maximize the rewards.

77

14.1 Supervised Learning

Classification is one type of classification, where a program is trained on a
dataset to predict the category of new data. Classification is either binary or
multi-class. For example, consider if an incoming message is either a text or a
picture. An incoming email may be spam or not. We can train the email system
that if an email contains certain words, then with a high probability, it is a spam
message. We can use linear classifiers to create a linear decision; this
classification is based on a linear combination of characteristics of the data.

14.1.2 Regression

Prediction is like classification; you predict a numerical value of a variable. Data
mining is examining data where the classification will occur in the future. One
approach for supervised learning is regression. Regression is predicting the
behavior of one variable based on the behavior of another variable. The variable
that is being predicted is the response variable. For example, if an influencer in
an online social network purchases an item or gives a high approval to an object,
several of their followers will purchase the same object. What makes a person an
influencer depends on many factors, such as fame, degree centrality,
betweenness, and so on. If you have a business, then you would like to recognize
these influencers as they can influence others to buy your product, which in
return could boost your business. Therefore, you need to be able to predict the
future behavior of people many times and make business decisions accordingly,
which means you need to apply regression.

14.1.3 Linear Functions

In the equation, , you can calculate the value of y if the value of x is
given. The relationship between x and y is linear. Regardless of the values of a
and b, the graph representing this equation is always a straight line. The variable
a is called slope as it defines the slope of the line and variable b is called the
intercept. The intercept is the value where the plotted line intersects the y-axis.
Slope and intercept are key values of linear regression.

The output of the following program as depicted in Figure 14-1 is a linear
regression between two variables, and the straight line is used to predict the
future values of the two variables.

y = a*x + b

78

import matplotlib.pyplot as plt

from scipy import stats

x=[1,2,3,-2,-5,20,-10,100,2]

y=[100,-2,20,-10,200,5,20,100,-11]

slope,intercept,r,p,std_err=stats.linregress(x, y)

def fun(x):

return (x*slope-0.5)

pred=list(map(fun,x))

plt.scatter(x,y,c="red")

plt.plot(x,pred)

plt.show()

14.1.4 Polynomial Functions

The following Python program depicts a polynomial regression as depicted in
Figure 14-2. Linear regression works on continuous data and when data are
correlated. However, if the correlation is not linear, we can use polynomial
regression that instead of a best-fit line will have a best-fit polynomial line.
Polynomials fit a wide range of curvature.

79

Figure 14-1

import numpy

import matplotlib.pyplot as plt

x=[1,2,3,4,5,6,7,8,9,10]

y=[10,-2,3,4,5,-200,11,90,0,200]

pred=numpy.poly1d(numpy.polyfit(x,y,5))

line=numpy.linspace(1,10,100)

plt.scatter(x,y)

plt.plot(line,pred(line))

plt.show()

A linear regression model can determine the relationship between a variable and
the response variable, where other variables are fixed. In polynomial regression,
a nonlinear relationship between variables is modeled.

80

Figure 14-2

14.2. Unsupervised Learning

In unsupervised learning, input data variables are given with no corresponding
output variables. Here the goal is to find patterns in the data. The machine must
group information according to patterns and similarities but without any prior
information.

• Clustering is one approach to unsupervised learning. This is where data is
divided into several groups, and data with similarities will be placed in the
same cluster. For example, emails that contain a set of specific words will
be classified as spam. First, each data point is assigned to one cluster,
then we calculate the center point of each cluster, reassign each data to
the cluster with the closest centroid, and repeat until no other cluster
assignment is possible.

The following Python program puts the data into two clusters, Figure 14–3
depicts the data:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import AgglomerativeClustering

x=[1,-1,2,-2,3,-3,4,-4,5,-5]

y=[10,20,30,-10,-20,30,50,100,90,1]

clust=list(zip(x,y))

hierarchical_cluster=AgglomerativeClustering(n_clusters=2)

labels=hierarchical_cluster.fit_predict(clust)

plt.scatter(x,y,c=labels)

plt.show()

81

And the following Python program puts the same data into four clusters. Figure
14-4 depicts the results.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import AgglomerativeClustering

x=[1,-1,2,-2,3,-3,4,-4,5,-5]

y=[10,20,30,-10,-20,30,50,100,90,1]

clust=list(zip(x,y))

hierarchical_cluster=AgglomerativeClustering(n_clusters=2)

labels=hierarchical_cluster.fit_predict(clust)

plt.scatter(x,y,c=labels)

plt.show()

82

Figure 14-3

• Association is another approach to unsupervised learning, where you find
rules that express your data. For example, people who are followers of
person x will be followers of person y, based on the list of people whom
they have followed in the past. Or, based on your past tweets, your future
tweets will contain certain words.

The following Python program uses a frequent pattern growth algorithm for
finding associations, which is a data-mining technique. Here it finds the frequent
items in a dataset, where the minimum support is 0.8, and the minimum
confidence for generating association rule is 0.5.

from fpgrowth_py import fpgrowth

car= [['Ferrari','Tesla','Ford'],['Ford','Tesla','Toyota']]

freqItemSet,rules=fpgrowth(car,minSupRatio=0.8, minConf=0.5)

print(freqItemSet)

The output is depicted below, as out of six data items, there are two “Ford” and
two “Tesla”; here the minimum support is 0.8:

[{‘Tesla’}, {‘Ford’}]
[{‘Tesla’}, {‘Ford’}]

83

Figure 14-4

15. Python and Statistics

Statistics is the science of collecting, organizing, and analyzing data. In statistics,
we frequently use these values:

• Mean: The average value of a data set is calculated by adding all numbers
in the data set and then dividing it by the number of values in the set.

✦ You can import Numpy and use numpy.mean()

• Median: The mid-point value is calculated by sorting all the data and
picking the one in the middle.

✦ Data should be sorted and then use numpy.median()

• Mode: The most common value is the number that occurs the highest
number of times.

✦ Use stats.mode(), which returns mode and how many times the mode
appeared.

• Standard deviation: This term refers to how much the data deviates from
the typical values.

✦ Returns the standard deviation of data, where a low number is an
indication that most numbers are close to the mean. Use numpy.std().

• Variance: This term refers to how the values are spread out, and it shows
how data points differ from the mean.

✦ Returns the variance of data. Use numpy.var().

• Quantiles: This term is used to divide a population according to a
distribution.

✦ Divides the data into intervals with equal probability. Use
numpy.quantiles().

84

The following Python program utilizes all the above functions.

import numpy

from scipy import stats

A=[10,2,3,4,5,6,7,8,9,10]

x=numpy.mean(A)

print("mean",x)

x=numpy.median(A)

print("median",x)

x=stats.mode(A)

print("mode",x)

x=numpy.std(A)

print("std",x)

x=numpy.var(A)

print("var",x)

x=numpy.quantile(A,0.75)

print(“75%",x)

And the output is as following:

mean 6.4
median 6.5
mode ModeResult(mode=10, count=2)
std 2.727636339397171
var 7.4399999999999995
75% 8.75

85

15.1 Standardizing Data by Scaling

Sometimes, your data has different numerical values and may even be in
different units of measurement, so it is hard to compare them. Imagine the
number of retweets and the number of followers of someone; both are numerical
values but in different scales. You can scale data, which means data is
standardized by scaling data to fit a normal distribution with a mean of zero and
a standard deviation of one. If a is the original value, m is the mean and s is the
standard deviation, a new standard value of a can be calculated as . In

Python, you can use StandardScaler() to do so.

The following Python program converts an array of old numbers into a scaled
array of new numbers.

from numpy import asarray

from sklearn.preprocessing import StandardScaler

old=asarray([[1,0.1],[2, 0.05],[10, 0.2],[5, 0.1],[-1, 0.01]])

print(old)

print("the new scaled data")

scaler=StandardScaler()

new=scaler.fit_transform(old)

print(new)

And the output is as the following:

[[1. 0.1]
 [2. 0.05]
 [10. 0.2]
 [5. 0.1]
 [-1. 0.01]]
the new scaled data
[[-0.62725005 0.12561486]
 [-0.36589586 -0.65947801]
 [1.72493763 1.69580059]
 [0.4181667 0.12561486]
 [-1.14995842 -1.2875523]]

a − m
s

86

15.2 T-Test

Many times, in statistics, we need to compare several samples to conclude the
given data. A t-test is used to see if there is a significant difference between two
groups of data. A t-test checks to see if the two groups of data are significantly
different or if the difference is just due to random variation of data, and, hence,
they are representing the same fact.

Assumption means that the data in each group follows the normal distribution
and that the observation of data in the two groups is independent of each other.

In a t-test, we compare two means while considering a signification level, which
is a predefined threshold used to decide whether to accept or reject results to be
statistically significant. The degree of freedom gives us the number of
independent variables used to calculate the estimate between two sample
groups. In the following Python program, the significance level is 5%, and the
degree of freedom is five, which depends on the size of the sample and how
many are independent of each other.

alpha=0.05

stats.t.ppf(1-alpha,5)

Stats contains a large number of probability distributions, statistical tests, and
estimations, which you can import into your Python program, with a command
such as the following:

import scipy.stats as stats.from scipy import stats

import numpy as np

A=np.array([1,2,3,4])

B=np.array([-12,100,8])

ts,pv=stats.ttest_ind(A,B)

alpha=0.05

df=len(A)+len(B)

ct=stats.t.ppf(1-alpha/4,df)

print(ts,"****",pv,"*****",ct)

print(“With T-value”)

87

if (ts>ct):

 print("significant difference")

else:

 print("No significant difference”)

88

References

1. David Amos, Dan Bader, Joanna Jablonski, and Fletcher Heisler. A practical
introduction to Python 3, ISBN: 9781775093336 (electronic).

2. Brian Heinold and John Prexy. A Practical Introduction to Python Programming,
ISBN: 979-8848271577.

3. https://docs.python.org/3/ Python 3.12 documentation

4. https://www.python.org

5. https://en.wikipedia.org/wiki/Python_Software_Foundation

6. Tony Gaddis. Starting out with Python, 5th edition. Pearson, ISBN:
978-0-13-592903-2.

7. Douglas B. West. Introduction to Graph Theory, 2nd edition. Pearson,
ISBN:978-0-13-1437371.

8. https://en.wikipedia.org/wiki/List_of_Unicode_characters

9. https://beginnersbook.com/2018/03/python-tutorial-learn-programming/

10.https://www.w3resource.com/python/python-tutorial.php

11.Wes McKinney. Python for Data Analysis, O’Reilly, ISBN: 978-1-449-31979-3.

12.Alberto Boschetti and Luca Massaron. Python Data Science Essentials, Packt
Publishing Ltd., ISBN: 978-1-78953-786-4.

13.Samir Madhavan. Mastering Python for Data Science, Packt Publishing Ltd.,
ISBN: 978-1-78439-015-0.

14.Andreas C. Müller and Sarah Guido. Introduction to Machine Learning with
Python, A Guide for Data Scientists, O’Reilly, ISBN: 978-1-449-36941-5.

15.Frank Kane. Hands-On Data Science and Python Machine Learning, Packt
Publishing Ltd., ISBN: 978-1-78728-074-8.

16.Joel Grus.Data Science from Scratch, O'Reilly, ISBN:978-1-492-04113-9.

89

https://docs.python.org/3/
https://www.python.org/
https://en.wikipedia.org/wiki/Python_Software_Foundation
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://beginnersbook.com/2018/03/python-tutorial-learn-programming/
https://www.w3resource.com/python/python-tutorial.php

Appendix

Solutions for Practice Questions (2.4)

1. Write a Python program to get a number, then calculate its squared and cubed
value.

number = int (input("Enter a number"))

print (number *number, "***", number*number*number)

2. Write a Python program to get a number such as n as input and then calculate
.

number= int (input("Enter a number"))

print (number ** number)

3. Write a Python program to get a number that contains three digits and then
display each digit on a single line.

number=int (input("Enter a number"))

d1 = number // 100

d2 = (number // 10) % 10

d3 = (number % 100) % 10

print (d1,"***", d2,"***", d3)

4. Write a Python program to get a circle's radius and calculate its area.

R= float (input("Enter a radius"))

Area=3.14*R*R

print ("The area is ", Area)

nn

90

5. Write a Python program to find the roots of a quadratic equation.

a = float (input (“Enter a"))

b = float (input ("Enter b"))

c = float (input ("Enter c"))

d = (b**2) - (4*a*c)

d1 = d**0.5

sol1 = ((-1*b) - d1)/(2*a)

sol2 = ((-1*b) + d1)/(2*a)

print (sol1,"***",sol2)

6. Write a Python program to get a name as input and display it five times.

name= input ("Enter a name")

print (name*5)

7. Write a Python program to get today’s date as three integers and display it as
m/day/year.

month= int(input("Enter a month"))

day= int(input("Enter a day"))

year= int(input("Enter a year"))

print(month,'/', day, '/', year)

8. Write a Python program to simulate the roll of a die.

import random

dice=random.randint(1,6)

print (dice)

91

9. Write a Python program to simulate the roll of a pair of dice.

import random

dice1=random.randint(1,6)

dice2=random.randint(1,6)

print (dice1,"****",dice2)

10.Write a Python program to generate an even random number between one
and one hundred.

import random

m=random.randint(1,50)

m=2*m

print (m)

Return to Section 2.4

92

Solutions for Practice Questions (3.2)

1. Write a Python program to get a number and verify if it is divisible by five.

number= int(input("Enter a number"))

if (number %5==0):

 print("It is divisible by 5")

else:

 print("It is not divisible by 5")

2. Write a Python program to get a number and verify if it is divisible by five or
by three.

number= int(input("Enter a number"))

if (number %5==0 or number %3==0):

 print ("It is divisible either by 3 or by 3")

else:

 print ("It is not divisible by 3 and 5")

3. Write a Python program to get a year and verify whether it is a leap or a
common year. A year is a leap year if it is divisible by four, except those years
divisible by a hundred are not leap years unless they are also divisible by four
hundred.

year= int (input ("Enter a year"))

if ((year%4==0 and year%100!=0)or(year %400==0)):

 print ("It is a leap year")

else:

 print ("It is a common year")

93

4. Write a Python program to get a date and check if it is a magic date. A date is
magical when you multiply month by day and get the year. For example,
February 12th of 2024 is a magical date as 2*12=24.

month= int(input("Enter a month"))

day= int(input("Enter a day"))

year= int(input("The last two digits of a year?”))

if (month*day ==year):

 print ("It is a magic date")

else:

 print ("It is NOT a magic date")

5. Write a Python program to get a number between one and five and convert it
to a Roman numeral.

number= int(input ("Enter a number"))

if (number==1):

 print ("I")

elif (number==2):

 print ("II")

elif (number==3):

 print ("III")

elif (number==4):

 print ("IV")

elif (number==5):

 print ("V")

else:

 print ("Invalid input")

94

6. Write a Python program to check if a given input is odd or even without using
remainder (%).

number=int (input("Enter a number"))

if ((number//2)*2==number):

 print ("Even")

else:

 print ("Odd")

7. Write a Python program to get a word that contains three symbols and display
it in reverse order.

name= input ("Enter a name")

print (name[2], name[1], name[0])

8. Write a Python program to get a word with a length of four as input and then
display each string element on one line.

name= input ("Enter a name")

print(name[3],"\n",name[2],"\n",name[1],"\n",name[0],end="")

9. Write a Python program to get a word with a length of four as input, then
switch the first and last elements and redisplay the new word.

name= input ("Enter a name")

print (name[3], name[1],name[2],name[0],end= "")

10.Write a Python program to get a word with a length of four as input and verify
if it is a palindrome.

name= input ("Enter a name")

if (name[3]==name[0] and name[2]==name[1]):

 print ("It is a palindrome")

else:

 print ("It is not a palindrome")

95

11.Write a Python program to get a word with a length of four as input and then
reverse it.

name= input ("Enter a name")

print (name[3],name[2],name[1],name[0], sep= "")

12.Write a Python program to get a word with a length of four as input, and if it
starts with ‘a’, replace ‘a’ with ‘A’ and redisplay the name; otherwise, display
the last two elements of the name.

name= input ("Enter a name")

if (name[0]== 'a'):

 print ('A' ,name[1],name[2],name[3], sep="")

else:

 print (name[2],name[3], sep="")

13.Write a Python program to get a word, and if the length of the word is even,
extract the first element and display it; otherwise, display the last element of
the string.

word = input ("Enter a name")

if (len (word) %2 ==0):

 print (word[0])

else:

 print (word[len (word) -1])

96

14.Write a Python program to get a word with a length of four as input and count
the total number of times it contains ‘e’ or ‘E.’

word= input ("Enter a word")

total=0

if (word[0]== 'e' or word[0]== 'E'):

 total=total+1

if (word[1]== 'e' or word[1]== 'E'):

 total=total+1

if (word[2]== 'e' or word[2]== 'E'):

 total=total+1

if (word[3]== 'e' or word[3]== 'E'):

 total=total+1

print ("The total number of E's " ,total)

97

15.Write a Python program to get a word with a length of four as input and then
replace every ‘e’ with ‘X.’

name= input ("Enter a name")

if (name[0]== 'e'):

 temp1= 'x'

else :

 temp1=name[0]

if (name[1]== 'e'):

 temp2= 'x'

else :

 temp2=name[1]

if (name[2]== 'e'):

 temp3= 'x'

else :

 temp3=name[2]

if (name[3]== 'e'):

 temp4= 'x'

else :

 temp4=name[3]

print (temp1,temp2,temp3,temp4,sep= “")

Return to Section 3.2

98

Solutions for Practice Questions (4.3)

1. Write a Python program to display numbers between one and five.

n=1

while (n<6):

 print (n)

 n=n+1

2. Write a Python program to display numbers between five and one.

n=5

while (n>0):

 print (n)

 n=n-1

3. Write a Python program to show at which temperature Fahrenheit and
Centigrade have the same reading.

F=-100

C=-99

while (F!=C):

 print (F, C)

 C=(F-32)*5//9

 F=F+1

4. Write a Python program to calculate the following sum: .

n=1

total=0

while (n<=10):

 total=total+n

 n=n+1

print (total)

1 + 2 + 3 + ... + 10

99

5. Write a program to calculate the following sum: .

n=1

total=0

while (n<=10):

 total=total+(1/n)

 n=n+1

print (total)

6. Write a program to display numbers between one and five using a for loop.

for n in [1,2,3,4,5]:

 print (n)

7. Write a program to display numbers between five and one using a for loop.

for n in [5,4,3,2,1]:

 print (n)

8. Write a program to simulate rolling a pair of dice and show how many tries it
takes to get a pair.

import random

total=0

flag= True

while (flag):

 dice1=random.randint(1,6)

 dice2=random.randint(1,6)

 total=total+1

 print (total, "***",dice1, "****",dice2)

 if (dice1 ==dice2):

 flag= False

1
1

+
1
2

+
1
3

+ ... +
1
10

100

9. Write a program to get five numbers as input and calculate their average.

total=0

for n in range (1,6):

 number=float (input ("Please enter a number"))

 total=total+number

print (total/5)

10.Write a program to get inputs from the keyboard, where “-1” indicates the
end of inputs, and then calculate their average.

total=0

counter=0

flag= True

while (flag):

 number=float(input("Enter a number,-1 to exit"))

 if (number !=-1):

 total=total+number

 counter=counter+1

 else :

 flag= False

print (total/counter)

101

11.Write a program to check whether a given word is a palindrome.

flag= True

word= input ("please input a word")

for n in range (0, len (word)):

 if (word[n] !=word[len (word)-1-n]):

 flag= False

if (flag== True):

 print ("It is a palindrome")

else:

 print ("It is NOT a palindrome")

12.Write a program to get a word as input and replace every string character
with its first character; for example,“abcd” would change to “aaaa”.

word= input ("please input a word")

for n in range (0, len(word)):

 print (word[0],end= "")

Return to Section 4.3

102

Solutions for Practice Questions (4.5)

1. Write a Python program to display the pattern in Figure 4-2.

for i in range (1,5):

 for j in range (1,i+1):

 print ("*", end=" ")

 print ("\n")

2. Write a Python program to display the pattern in Figure 4-3.

for i in range (1,5):

 for j in range (1,i+1):

 print (i, end= " ")

 print ("\n")

3. Write a Python program to display the pattern in Figure 4-4.

for i in range (1,5):

 for j in range (1,i+1):

 print (j, end= " ")

 print(“\n")

4. Write a Python program to display the pattern in Figure 4-5.

for i in range (5,1,-1):

 for j in range (1, i):

 print (j, end= " ")

 print (“\n”)

103

5. Write a Python program to display the pattern in Figure 4-6.

for i in range (1,5):

 for j in range (5, i,-1):

 print (" " , end= " ")

 for k in range (1,j):

 print (k, end= " ")

 print ("\n" ,end= "")

6. Write a Python program to display the pattern in Figure 4-7.

for n in range (0,5):

 for m in range (n, 4):

 print (" " , end= "")

 for m in range (n + 1):

 print ("* " , end="")

 print ()

7. Write a Python program to display the pattern as depicted in Figure 4-8.

for n in range (0,5):

 for m in range (n, 4):

 print (" ", end= "")

 for m in range (n + 1):

 print (n, end="")

 print()

104

8. Write a Python program to display the pattern as depicted in Figure 4-9.

for n in range (0,5):

 for m in range (n, 4):

 print (" ", end= "")

 for m in range (n + 1):

 print (n, end=" ")

 print ()

9. Write a Python program to display the pattern depicted in Figure 4-10.

for n in range (0,5):

 for m in range (n, 4):

 print (" ", end= "")

 for m in range (n + 1):

 print (m, end=" ")

 print ()

10.Write a Python program to display the pattern depicted in Figure 4-11.

for n in range (0,5):

 for m in range (n, 4):

 print (" ", end= "")

 for m in range (n+1,0,-1):

 print (m, end=" ")

 print ()

Return to Section 4.5

105

Solutions for Practice Questions (5.4)

1. Write a Python program to generate a random number between zero and five,
then simulate a magic ball. You may select your message from these options:
without a doubt, better not tell you now, my sources say no, ask again later,
outlook hazy.

import random

def magic(rand1):

 if (rand1==1):

 print (“ Reply Hazy")

 if (rand1==2):

 print (" Without a doubt")

 if (rand1==3):

 print (" Better not tell you now")

 if (rand1==4):

 print (" My sources say no")

 if (rand1==5):

 print (" Ask again later")

rand1=random.randint(1,5)

magic(rand1)

2. Write a Python program to get a word from a user through the keyboard and
then display the first character of that word.

word= input("Please enter a word:")

def Extract(word):

 print(word[0])

Extract(word)

106

3. Write a Python program to get a word from a user through the keyboard and
then display the first character of that word. Extracting the character should
be done in a function, but displaying the character should be done in the main
program.

word= input ("Please enter a word:")

def Extract(word):

 return(word[0])

print (Extract(word))

4. Write a Python program to get two numbers as input and calculate their
average.

val1= float(input("1st number?"))

val2= float(input("2nd number?"))

def Avg (num1,num2):

 return ((num1+num2)/2)

print (Avg(val1,val2))

5. Write a Python program to get a degree in Fahrenheit and convert it to
Celsius.

F= float (input("Please input a degree in F:"))

def FtoC(F):

 C=(F-32)*5/9

 return C

print (FtoC(F))

107

6. Write a Python program to get an input (integer) and calculate its factorial,
where the factorial of a number is denoted by n! and is the product of all
positive integers less than or equal to n. For example, .

number=int (input("Input a value:"))

def Fact (m):

 fact=1

 for i in range (1,m+1):

 fact=fact*i

 print (m, "!=" ,fact)

Fact(number)

7. Write a Python program to generate the first ten Fibonacci numbers, where
each is the sum of the two preceding ones. These are numbers in the
Fibonacci series:

number= int(input("How many elements of Fibonacci should I display?"))

def Fib (m):

 i=0

 fib1=1

 fib2=1

 total=0

 print("Fibonacci series: ",fib1,",",fib2,end= "")

 for i in range (1,m+1):

 total=fib1+fib2

 print (",", total,end= "")

 fib1=fib2

 fib2=total

Fib(number)

5! = 5 × 4 × 3 × 2 × 1

1, 1, 2, 3, 5, 8, ...

108

8. Write a Python program to get a word from a user through the keyboard and
then reverse the word through the use of a function.

word= input ("Please enter a word:")

def Rev(word):

 newname=“”

 for i in range (0, len(word)):

 newname=word[m]+newname

 return(new name)

print (Rev(word))

Return to Section 5.4

109

Solutions for Practice Questions (7.4)

1. Write a Python program to read a file and print every line of the file on the
screen by using a for loop.

myfile=open("output11.txt",'r')

for n in myfile:

 str1=int(n)

 print(str1)

myfile.close()

2. Write a Python program to read a file and print every line of the file on the
screen by using a while loop.

myfile=open("output11.txt",'r')

str1=myfile.readline()

while str1 !='':

 str1=myfile.readline()

 print(str1)

myfile.close()

3. Write a Python program to read a file and print the total number of lines in the
file.

myfile=open("output11.txt",'r')

str1=myfile.readline()

m=0

while str1 !='' :

 print(str1.rstrip('\n'))

 m=m+1

 str1=myfile.readline()

myfile.close()

print("The total number of lines is :",m)

110

4. Write a Python program to read a file and print every word in the file that
begins with ‘A’.

myfile=open("output2.txt",'r')

line=myfile.readline()

while(line !=''):

 if(line[0] =="A"):

 print(line)

 line=myfile.readline()

myfile.close()

5. Write a Python program to get an input from the keyboard and then add it to
an existing file.

myfile=open("output2.txt",'a')

line=input("please input the word to be added to file")

myfile.write(line)

myfile.close()

6. Write a Python program to generate five random numbers and write them in a
file.

import random

randfile=open("output2.txt",'w')

for n in range(1,6):

 rand1=random.randint(-10,10)

 randfile.write(f'{rand1} \n')

randfile.close()

111

7. Write a Python program to read a file and check if it contains a specific word.

myfile=open("input00.txt",'r')

flag=True

while(flag or line !=''):

 line=myfile.readline()

 if line.find('Chester') != -1:

 flag=False

 if(line ==''):

 break

myfile.close()

if(flag==False):

 print("Found")

else:

 print("Not Found")

112

8. Write a Python program to read a file and count the total number of e’s in the
file.

myfile=open("input00.txt",'r')

counter=0

line="..."

while(line !=''):

 line=myfile.readline()

 for n in range(0,len(line)):

 if(line[n] =="e"):

 counter=counter+1

myfile.close()

print(counter)

9. Write a Python program to write five numbers on a file and then display their
summation.

myfile=open("data.txt","w")

for n in range(1,6):

 myfile.write(str(n))

 myfile.write("\n")

myfile.close()

myfile=open("data.txt","r")

sum=0

for n in myfile:

 sum=sum+int(n)

print(sum)

myfile.close()

Return to Section 7.4

113

Solutions for Practice Questions (8.1)

1. Write a Python program to replace every element of a list with its square.

for i in range(len(num)):

 num[i]=num[i]**2

2. Write a Python program to find the smallest and the second smallest elements
in a list.

num=[12,-3,100,-67]

num.sort()

print(num[0],num[1])

3. Write a Python program to remove the first and last elements of a list and
redisplay the new list.

num=[12,-3,100,-67,200,5]

m=len(num)

num.remove(num[0])

num.remove(num[len(num)-1])

print(num)

4. Write a Python program to calculate the average of the elements in a list.

num=[-5,4,5,1,-4]

print(sum(num)/len(num))

5. Write a Python program to replace every even element of a list with “*”.

num=[12,-6,3,200,11,21,0]

for n in range(0,len(num)):

 if(num[n] %2==0):

 num[n]="*"

print(num)

Return to Section 8.1

114

Solutions for Practice Questions (9.1)

1. Write a Python program to generate an array and reverse it, without changing
the order of elements in the original array.

def rev(A):

 NewA=A[::-1]

 print("Reversed Array is: ",end=" ")

 for i in NewA:

 print(i, end=" ")

A=[1,2,3,4,5]

rev(A)

2. Write a Python program to generate an array as input and reverse it. The
original array will be reversed.

A=[1,2,3,4,5,6]

print(A)

def rev(A,start,end):

 while start < end:

 A[start],A[end]=A[end],A[start]

 start=start+1

 end=end-1

rev(A,0,5)

print("Reversed array is: ")

print(A)

115

3. Write a Python program to find the common elements in two arrays.

A=[1,-1,0,100,2]

B=[100,12,-1]

def com(A,B):

 com=[i for i in A if i in B]

 return com

print(com(A,B))

4. Write a Python program to find repeated items in an array.

A=[1,-1,0,1,2,200,1,0]

def Repeat(A):

 size=len(A)

 rep=[]

 for i in range(size):

 k=i+1

 for j in range(k,size):

 if (A[i]==A[j] and A[i] not in rep):

 rep.append(A[i])

 return rep

print(Repeat(A))

116

5. Write a Python program to find the second largest value in an array.

A=[1,0,4,-1,100]

n=len(A)

def Max(A,size):

 A.sort(reverse=True)

 for i in range(1,size):

 if (A[i] != A[0]):

 print("The 2nd largest ",A[i])

 return

Max(A,n)

6. Write a Python program to check if an array contains a value.

A=[1,-1,100,2,-100]

flag=False

for i in A:

 if(i==100):

 flag=True

 break

if(flag==True):

 print("Found")

else:

 print("!Found")

Return to Section 9.1

117

	About PA-ADOPT
	Preface
	About OER
	Table of Contents
	1. Installing Python
	2. Introduction to Programming
	2.1. Variables
	2.1.1. Boolean Variables
	2.1.2. Random Variables

	2.2. Strings
	2.3. ASCII Code
	2.4. Practice Questions

	3. Decision Structures
	3.1. Nested Decision Structures
	3.2. Practice Questions

	4. Repetitions
	4.1. While Loops
	4.2. For Loops
	4.3. Practice Questions

	4.4. Nested Loops
	4.5. Practice Questions

	5. Functions
	5.1. Void and Value Returning Functions
	5.2. Passing Data to and From Functions
	5.3. Mathematical Built-in Functions
	5.4. Practice Questions

	6. Recursion
	7. File Access
	7.1. Read From a File
	7.2. Write to a File
	7.2.1. New File
	7.2.2. An Existing File

	7.3. Notable Built-in Functions
	7.4. Practice Questions

	8. Lists
	8.1. Practice Questions

	9. Arrays
	9.1 Practice Questions

	10. Plotting Graphs
	11. Object Oriented Programming
	11.1 Constructor
	11.2 Inheritance
	11.3 Polymorphism

	12. Using Python Packages
	13. Python and Graph Theory
	13.1 Networkx
	13.2 Matplotlib

	14. Python and Machine Learning
	14.1 Supervised Learning
	14.1.2 Regression
	14.1.3 Linear Functions
	14.1.4 Polynomial Functions

	14.2. Unsupervised Learning

	15. Python and Statistics
	15.1 Standardizing Data by Scaling
	15.2 T-Test

	References
	Appendix
	Solutions for Practice Questions (2.4)
	Solutions for Practice Questions (3.2)
	Solutions for Practice Questions (4.3)
	Solutions for Practice Questions (4.5)
	Solutions for Practice Questions (5.4)
	Solutions for Practice Questions (7.4)
	Solutions for Practice Questions (8.1)
	Solutions for Practice Questions (9.1)

